A C-LSTM Neural Network for Text Classification
نویسندگان
چکیده
Neural network models have been demonstrated to be capable of achieving remarkable performance in sentence and document modeling. Convolutional neural network (CNN) and recurrent neural network (RNN) are two mainstream architectures for such modeling tasks, which adopt totally different ways of understanding natural languages. In this work, we combine the strengths of both architectures and propose a novel and unified model called C-LSTM for sentence representation and text classification. C-LSTM utilizes CNN to extract a sequence of higher-level phrase representations, and are fed into a long short-term memory recurrent neural network (LSTM) to obtain the sentence representation. C-LSTM is able to capture both local features of phrases as well as global and temporal sentence semantics. We evaluate the proposed architecture on sentiment classification and question classification tasks. The experimental results show that the C-LSTM outperforms both CNN and LSTM and can achieve excellent performance on these tasks.
منابع مشابه
Long Short-term Memory Network over Rhetorical Structure Theory for Sentence-level Sentiment Analysis
Using deep learning models to solve sentiment analysis of sentences is still a challenging task. Long short-term memory (LSTM) network solves the gradient disappeared problem existed in recurrent neural network (RNN), but LSTM structure is linear chain-structure that can’t capture text structure information. Afterwards, Tree-LSTM is proposed, which uses LSTM forget gate to skip sub-trees that h...
متن کاملUser Classification with Multiple Textual Perspectives
Textual information is of critical importance for automatic user classification in social media. However, most previous studies model textual features in a single perspective while the text in a user homepage typically possesses different styles of text, such as original message and comment from others. In this paper, we propose a novel approach, namely ensemble LSTM, to user classification by ...
متن کاملThe Optimization of Forecasting ATMs Cash Demand of Iran Banking Network Using LSTM Deep Recursive Neural Network
One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملMulti-Timescale Long Short-Term Memory Neural Network for Modelling Sentences and Documents
Neural network based methods have obtained great progress on a variety of natural language processing tasks. However, it is still a challenge task to model long texts, such as sentences and documents. In this paper, we propose a multi-timescale long short-termmemory (MT-LSTM) neural network to model long texts. MTLSTM partitions the hidden states of the standard LSTM into several groups. Each g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1511.08630 شماره
صفحات -
تاریخ انتشار 2015